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Figure 1: We conducted a long-distance (250m) test on a controller based on multi-brain collabo-
rative. At the beginning of the map, the robot relied on height-map and proprioception to traverse
through terrain. During the test, we simulated a scenario where the lidar suddenly malfunctioned
(by covering it with a orange bag). The robot did not experience any mode crashes and was still able
to handle complex terrains effectively.

Abstract: In the field of locomotion task of quadruped robots, Blind Policy and
Perceptive Policy each have their own advantages and limitations. The Blind Pol-
icy relies on preset sensor information and algorithms, suitable for known and
structured environments, but it lacks adaptability in complex or unknown environ-
ments. The Perceptive Policy uses visual sensors to obtain detailed environmental
information, allowing it to adapt to complex terrains, but its effectiveness is lim-
ited under occluded conditions, especially when perception fails. Unlike the Blind
Policy, the Perceptive Policy is not as robust under these conditions. To address
these challenges, we propose a Multi-Brain collaborative system that incorporates
the concepts of Multi-Agent Reinforcement Learning and introduces collaboration
between the Blind Policy and the Perceptive Policy. By applying this multi-policy
collaborative model to a quadruped robot, the robot can maintain stable locomo-
tion even when the perceptual system is impaired or observational data is incom-
plete. Our simulations and real-world experiments demonstrate that this system
significantly improves the robot’s passability and robustness against perception
failures in complex environments, validating the effectiveness of multi-policy col-
laboration in enhancing robotic motion performance.
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1 Introduction

What happens if a robot suddenly loses its perception? Can it maintain its previous stable motion?
In natural environments, the sensory systems of humans and animals can sometimes experience
temporary or permanent impairments, such as “dark adaptation” phenomenon when moving from a
bright to a dark environment. In these situations, humans and animals can rely on past experiences
to immediately switch to a state of motion without sensory input, ensuring safe movement.

For humans, this ability stems from two main sources. First, the human brain has a strong adap-
tive and memory capacity. When the perceptual system fails for a short period of time, the brain
will automatically call upon memories and experiences to compensate for the perceptual deficit.
Secondly, the human motor control system has a high degree of redundancy and multisensory in-
tegration. For example, when vision fails, the proprioceptive and vestibular systems enhance their
role in maintaining balance movement.

In the motion tasks of bipedal and quadrupedal robots, sensory systems may fail due to incomplete
information or hardware malfunctions. These robots rely on various sensors to gather environmental
data, such as LiDAR, cameras, and ultrasonic sensors. However, the effectiveness of these sensors
can be limited in low-light or adverse weather conditions, or they may fail due to physical dam-
age or signal disruptions. Therefore, researching how to maintain stable robot motion under these
unfavorable conditions is a challenge in current studies.

In locomotion tasks, blind policies and perceptive policies each have their advantages and limita-
tions [1]. Blind policies rely on sensors and preset algorithms for movement, requiring no visual
input [2, 3, 4, 5]. Although they are fast and consume fewer resources, their adaptability in com-
plex or unknown environments is limited, and they have weaker obstacle recognition abilities and
generalizability. Perceptive policies use visual sensors to obtain detailed information about the en-
vironment, enabling robots to adapt to complex terrains [6, 7, 8]. However, in less than ideal visual
conditions or in known and structured environments, perceptive policies may not be as efficient as
blind policies. Researching how to effectively merge these two policies to cope with complex and
changing environments is an equally challenging research issue.

Addressing the challenges mentioned, this study integrates Multi-Agent Reinforcement Learn-
ing (MARL) [9, 10] to propose the concept of Multi-Brain Game Collaboration. We envision a
quadruped robot system integrating multiple policies to form a collective “brain” with each pol-
icy tailored to different input policies. Specifically, we explore the interaction between a Blind
Policy, independent of perceptual input, and a Perceptive Policy that utilizes external information.
This model excels in scenarios with incomplete observational data or impaired sensory capabilities,
accurately simulating and analyzing the robot’s interactions with its environment. This approach
enhances decision-making and adaptability in complex environments.

The primary contributions of this research are as follows:

• A Novel Multi-Brain Game Collaboration System: This study introduces and success-
fully implements a multi-brain game collaboration system using MARL. In this system,
each policy or “brain” independently and collaboratively optimizes decisions for differ-
ent tasks. This design mimics the division of labor and cooperation in biological neural
systems, significantly enhancing decision-making efficiency and precision.

• Perception ”Hot Swap”: The research realizes ”Hot Swaping” of external perception in
quadruped robots control. Experiments in both simulation and real world have proven that
this method can keep robust locomotion when sudden failure of external perception.

• Enhanced Mobility in Complex Environments: Through the non-zero-sum game [11]
between blind and perceptive policies, this policy allows the robot to make accurate and
effective motion decisions.
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2 Related work

Multi-Agent Reinforcement Learning In the field of Multi-Agent Reinforcement Learning
(MARL), there are generally three learning paradigms: centralized learning, independent learn-
ing, and Centralized Training with Decentralized Execution (CTDE) [12]. Among these, CTDE
effectively combines the advantages of centralized learning with the flexibility of decentralized ex-
ecution.

MADDPG [13] is a typical representative of the CTDE paradigm, employing an actor-critic frame-
work. However, as an off-policy algorithm, MADDPG requires extensive memory storage to save
previous experiences and may not perform as stably in dynamic environments as on-policy algo-
rithms. MATD3 [14], a multi-agent version of TD3, enhances the stability of multi-agent cooper-
ation through double Q-learning and delayed policy updates, but this also increases computational
complexity, especially in large-scale multi-agent environments, and is extremely sensitive to hy-
perparameters, which may require extensive tuning and experimentation in practical applications to
achieve optimal performance.

MAPPO [15], for the first time, effectively extends the single-agent PPO algorithm to a multi-
agent environment, becoming an on-policy strategy that can handle complex multi-agent collabo-
rations while maintaining the stability and efficiency of policy updates. MAPPO not only retains
the advantages of PPO but also successfully addresses the collaboration problems in multi-agent
environments. Its application on the SMAC platform demonstrates its high sample efficiency and
consistency of policies [16].

Blind Policy & Perceptive Motion Policy In enhancing the adaptability and motion performance
of quadruped robots in complex environments, current research explores three primary policies. The
first policy, termed the blind policy, relies on the robot’s proprioceptive history, primarily utilizing
forelimb probing, to estimate terrain [3, 5, 2]. This policy faces limitations in complex or unknown
environments due to its weak obstacle recognition and generalization capabilities. The second policy
uses a holistic control approach based on external sensory inputs to gather environmental details,
helping the robot plan movements and navigate complex terrains [17, 18, 19, 20, 21]. However, this
often involves isolated end-to-end network architectures without testing for sensor reliability. The
third, a composite policy [22, 23] integrates blind and visual policies into a synergistic mechanism,
quickly adapting to sudden failures in external perception systems.

In sim2real applications for vision-based motion controllers using reinforcement learning, two main
approaches are prevalent: end-to-end training with depth or RGB images, effective in quadrupedal
robots, and using elevation maps [24, 25] or height scans from a Global Reference Frame. The latter
provides precise terrain information, enhancing adaptability and performance in complex environ-
ments. Compared to traditional images, elevation maps mitigate poor visual conditions, improving
navigation and decision-making [26, 27]. Furthermore, LiDAR offers high precision and reliability
under low light or visual occlusion, with its point cloud data converted into elevation maps providing
rich 3D terrain details, crucial for obstacle detection and terrain analysis.

To the best of the authors’ knowledge, there has been no research combining multi-agent reinforce-
ment learning algorithms such as MAPPO to achieve non-zero-sum games between blind policies
and perceptive policies. Our approach can accurately simulate and analyze the complex interactions
between the robot and the environment, even under conditions of incomplete observation data or
sensory loss, thereby enhancing the robot’s motion performance in various environments.

3 Method

3.1 Task Formulation

In the locomotion task of a quadruped robot, we define a process that combines a blind policy and
an external perception-based policy to handle complex environments. Specifically, the quadruped
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Figure 2: Two-stage multi-brain game collaborative training overview.

robot can flexibly navigate various obstacles such as highlands, gaps, obstacles, and stairs when
external perception (e.g., LiDAR elevation maps) is functioning properly. However, when external
perception suddenly fails, the quadruped robot, although unable to navigate terrains such as gaps,
should still retain the capability to traverse complex terrains like stairs and ramps.

We have designed a two-stage training approach, as illustrated in Figure 2. In the first stage, a
training mode without external perception is used, involving only a blind policy. In the second
stage, a multi-agent approach is employed, incorporating external perception and simultaneously
training both the blind policy and a perceptive policy with perception capabilities. The collaboration
between these two policies is guided by a terrain reconstruction error regularization term. This
ensures that our robot can effectively traverse terrains both with and without perception.

3.2 Base Set

Theorem We describe the locomotion problem of quadruped robots using a Partially Observable
Markov Decision Process (POMDP) [28, 29].The POMDP framework effectively models decision-
making scenarios where information is incomplete, defining key elements such as states, actions,
observations, and rewards. In this model, the environment at time step t is represented by a complete
state xt. Based on the agent’s policy, an action at is performed, resulting in a state transition to xt+1

with a probability P (xt+1 | xt, at). The agent then receives a reward rt and a partial observation
ot+1. The aim of reinforcement learning here is to identify a policy π that maximizes the expected
discounted sum of future rewards:

J(π) = Eπ

[ ∞∑
t=0

γtrt

]

Action Space & State Space The action spaces for the blind policy and perceptive policy are
respectively ablindt ∈ R12 and apercept ∈ R12, representing the offset from the default posi-
tion for each joint. The critic networks for both policies observe the global state scritict =
[ot, vt, et, ht, a

percep
t , ablindt ]T , which includes proprioceptive observations ot, linear velocities vt,

height map ht and latent variables et such as body mass, center of mass position, friction coeffi-
cients, and motor strength. These global observations are crucial for the second phase of training,
helping the critic network make balanced decisions during the interactions between the two policies
and preventing training collapse due to excessive competition.

For the actor networks, the state space for the blind policy includes proprioceptive observations
ot, estimated linear velocity v̂t, and latent variables et. Additionally, aligning with the multi-agent
game theory approach, the state space for the blind policy also incorporates the output from the
Perceptive Policy apercept , expressed as sblindt = [ot, v̂t, et, a

percep
t ]T . Similarly, the state space

for the Perceptive Policy is spercept = [ot, ht, a
blind
t ]T , where ht represents the local elevation map

centered around the robot.
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During the training for the Blind policy, we employed the Regularized Online Adaptation (ROA)
method [30] to estimate the explicit observations v̂t and the latent variables et. In this phase, apercept

was set to zero. In the second phase of training, the final action at = apercept + ablindt .

3.3 Blind Pretrain

In the first stage of training, we primarily developed a proprioceptive motion system for the
quadruped robot, aimed at enabling the robot to traverse various complex terrains such as uneven
slopes, stairs, and discrete terrains without direct visual or elevation map input to the policy. During
this phase, the output action of perceptive policy apercept was set to zero, ensuring that the blind pol-
icy operates without interference from perceptive policy’ outputs. Our blind policy, inspired by the
ROA [30], uses history proprioceptive inputs to estimate the robot’s explicit privileged information
and implicit environment and dynamic information. This approach has been proven to effectively
overcome the sim-to-real gap. Additionally, the training utilized an asymmetric Actor-Critic struc-
ture to better evaluate the quality of the actions output by the Actor.

For the robot’s elevation map, we trained a Variational Autoencoder (VAE) model primarily to mem-
orize the terrains encountered by the blind policy and to compute regularization terms for action
constraints in the subsequent training phase.

3.4 All Tasks train

In the second stage of learning, we introduced a multi-agent learning approach, utilizing a Non-zero-
sum game thinking and MAPPO[15] to optimize the external perception controllers for quadruped
robots. Unlike traditional single-policy approaches such as parkour[21], this method allows for
adaptation when one controller fails, as other controllers can detect and adjust their actions, enhanc-
ing the system’s robustness. Within the multi-agent framework, the gradients for each controller are
updated independently, facilitating task separation and allowing each controller to focus on specific
tasks, thereby improving the overall adaptability of the system. Additionally, this model supports
”hot-swapping” of the perception system, enabling the robot to move based on sensory data when
available and to continue proprioceptive movement without malfunction when perception is unex-
pectedly lost.

The primary implementation policy is as follows: As shown in Figure 2, we first load the pre-trained
model of the single-agent blind policy as a blind agent, and we initialize the perceptive policy as a
perceptive agent. Inputs to the perceptive policy include proprioceptive data, outputs from the blind
policy, and elevation map information, primarily adjusted for terrain. The robot’s final actions are a
combination of perceptive and blind actions.

In the second stage, challenging terrains such as gaps, pillars, and highlands were introduced, which
are difficult for the quadruped to traverse without external observation. The robots were encour-
aged to traverse these difficult terrain without collision. Specifically, although the terrains vary, We
established a general reward structure as shown in 4. The robots will not be rewarded if they fail
to follow the desired heading, ensuring they traverse the terrain instead of avoiding it. Addition-
ally, the weights of the collision penalty were set high to encourage the robots to rely on external
observations in these challenging terrains rather than solely on proprioception.

This framework ensures that during training, the perceptive and blind policies interact and collabo-
rate to optimize movement. All networks use the CTDE approach with MAPPO [15] updates, where
each agent’s Critic network shares all environmental information, including the inputs and outputs
of other agents, during training, while each operates independently during execution. The loss cal-
culations and updates for the blind policy remain as in the first phase, while the perceptive policy’s
loss includes surrogate loss, value loss, entropy loss, and a Reconstruction Error Regularizer, which
will be explained in detail in 3.5.

3.5 VAE & Perception Cooperation Constraint Regularization
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Figure 3: Regularization determines
whether the terrain is familiar by recon-
structing the elevation map, and guides and
balances the Blind Policy and Perceptive
Policy

In the first stage, we primarily trained the quadruped
robot to navigate slopes, steps, and discrete obstacles
without relying on external perception. These terrains
were chosen because they enable the robot to learn fun-
damental locomotion skills and develop robust capabili-
ties. Steps, in particular, significantly improve the robot’s
ability to lift its legs and react to tripping, thereby enhanc-
ing overall mobility. We believe these terrains exemplify
the types of environments a robot can navigate without
perception in real-world scenarios. We employed a Vari-
ational Autoencoder (VAE) to encode and decode these
features. We evaluate the VAE reconstruction error on
the first stage terrain after training and obtain the maxi-
mum reconstruction error τ during testing. The VAE was
trained once in first stage and frozen in second stage.

In the second stage, we introduced more challenging ter-
rains, such as highlands, gaps, and dense pillars, as shown
in Figure 2, which are difficult for the robot to navigate using only the Blind Policy trained in the
first stage. In particular, the highlands require the robots to jump up and down, the gaps necessitate
learning to jump over them, and the pillars demand that the robots avoid them before returning to
their original direction. Therefore, it must rely on the Percep policy with external perception input
for compensation.

However, the complexity introduced by Multi-Agent Learning can lead to policies converging to
local optima, with the blind policy and Percep policy potentially competing against each other,
hindering coordinated control. To address this, we introduced a perception cooperation constraint
regularization term based on elevation maps. This term helps ensure that if the current elevation map
reconstruction error, as produced by the VAE, is below a threshold τ , indicating familiarity with the
terrain, the regularization term increases with the Percep policy’s output, limiting its action. If the
reconstruction error exceeds the threshold τ , indicating unfamiliar terrain, the regularization term is
set to zero, encouraging the Perceptive policy to compensate.

Specifically, in the second stage, the robot’s current elevation map hij is input into the VAE,
which reconstructs the elevation map ĥij . The reconstruction error is then calculated as Ei =
1
n

∑n
j=1(ĥij − hij)

2, where i represents the i-th sample in the batch, j represents the index of the
dimensions of the elevation map and action, and n represents the dimension of the elevation map.
Based on the reconstruction error and the threshold, we define the penalty factor:

Ii =
{
0 if Ei > τ

1 if Ei ≤ τ

This means that when the reconstruction error exceeds the threshold, the regularization term is set
to 1, otherwise it is 0. The perception cooperation constraint regularization term is then introduced
as:

Pi =
1

m

m∑
i=1

Ii
k∑

j=1

a2ij

where k represents the dimension of the action, and m represents the batch size. Finally, the to-
tal loss function consists of the surrogate loss, value function loss, policy entropy, and the action
regularization term:

L = Lsurrogate + λvLvalue − λeH(π) + λaPi

Details of simulation and training are in Supplementary.
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4 Experimental Results

4.1 Experiment Setup

We used the Unitree Go2 robot as our experimental subject, which features 12 degrees of freedom
in its legs. Utilizing a single NVIDIA RTX 4090 GPU, we simultaneously trained 4096 domain-
randomized Go2 robot environments in Isaac Gym. During training, we employed PD position
controllers for each joint, with both the Blind Policy and Perceptive Policy running at a frequency of
50 Hz. The elevation map update rate was set to 10 Hz, and the robot’s control signal delay was 20
ms. Additional domain randomization parameters and training specifics are detailed in the appendix.

The training terrain comprised six types: ramps, stairs, discrete obstacles, highlands, gaps, and pillar
terrain, as shown in Figure 2. This simulates the vast majority of terrain that quadrupeds encounter
in the physical world. For animals, the last three types of terrain cannot be predicted in advance
and require visual perception to plan ahead for movement to navigate through obstacles. The first
three types of terrain are less rugged, and even if an animal suddenly loses its visual input, it can
still navigate freely with proprioceptive input, which is a natural occurrence based on the animal’s
adaptive nervous system. Similarly, the purpose of our experiment is to prove whether our method
can achieve the following behaviors:

• Can the robot successfully navigate the tough terrain of the last three types with perceptual
input?

• Can the robot adapt and successfully navigate the first three types of terrain without any
mode collapse when perceptual input suddenly fails?

4.2 Simulation Experiment

Figure 4: Robustness testing In simulation, the perception-
based RMA mode collapses when the height map is cor-
rupted while our policy works well.

Terrain Passability Experiment:
We first tested the survival rate of our
policy across last three tough terrains
with varying levels of difficulty. For
each terrain and difficulty level, we
conducted four trials, with each trial
consisting of 100 environment sam-
ples. We calculated the success rate
for each trial and averaged these four
success rates to obtain the final exper-
imental result. The success rate for
the Gap and Pit terrains was defined as the robot successfully crossing or climbing over the obstacle,
while for the Pillar terrain, it was defined as the proportion of environments the robot navigated
without collisions. As shown in Table 1, our policy achieved high success rates across various tough
terrains. The highest difficulty level for each terrain was beyond the scope of our curriculum settings,
demonstrating the robustness of our algorithm.

Gap Success Rate Pit Success Rate Pillar Success Rate

0.35m 99.3% 0.30m 97.6% obstacle size=0.4 ; distance=1.6 86.7%
0.45m 98.3% 0.40m 97.6% obstacle size=0.5 ; distance=1.5 80.4%
0.55m 91.3% 0.50m 85.0% obstacle size=0.6 ; distance=1.4 65.0%
0.65m 44.3% 0.55m 49.3% obstacle size=0.7 ; distance=1.3 60.7%

Table 1: Success Rates in Tough Terrains

Comparison Experiment: We evaluated the robot’s ability to traverse complex terrains under per-
ception failure conditions and compared methods with several baselines and ablations as follows:

• Baseline: Training directly with proprioception and height map.

7



• RMA[31]: Employing an Adaptation Module to estimate all privileged observations, but
directly inputting the elevation map into proprioception.

• MLith[20]: Utilizing a GRU neural network as the Actor, with proprioceptive and extero-
ceptive inputs fed directly into the GRU.

• Dual-History[32]: Utilizing a dual-history structure, where short-term and long-term his-
tory observation are processed separately.

• Ours w/o Regularizer: Training without Perception Cooperation Constraint Regulariza-
tion.

As shown in Table 2, comparing with other methods, our method demonstrates the most robust
performance under external perception failure, especially when climbing stairs. Other strategies
failed to handle obstacles without perception, resulting in tripping over obstacles. In contrast, our
method can easily climb steps, and the MXD indicates that our method can also follow the high
desired speed (1 m/s). Figure 3. shows the effect of our run in simulation.

We believe that the huge difference in the success rate of going up and down stairs comes from
the fact that going down stairs only requires considering the policy’s ability to maintain balance, as
gravity will guide the robot down, while going up stairs requires the robot to sense obstacles and
determine the implicit type of obstacles in order to present a regular foot lift height.

We noticed that with the regularizer, the robots performed better when going upstairs and overall in
MXD. This improvement is due to the regularizer guiding the collaboration between the blind policy
and the perceptive policy across different terrains during training.

Method Up Stair Success Down Stair Success Discrete Success Stair MXD Discrete MXD

Ours 97% 100% 90% 19.97 17.04
Ours w/o Regularizer 87% 100% 90% 16.42 14.99

RMA 0% 100% 81% 8.2 12.38
MLith 0% 100% 84% 9.4 14.61

Dual-History 0% 100% 82% 10.9 13.77
Baseline 0% 100% 76% 7.8 11.53

Table 2: we primarily compared the success rates of different methods on stairs and discrete terrains,
as well as the Mean X-Displacement (MXD) for each environment. For this experiment, all elevation
map inputs were set to zero, desired x velocity was set to 1m/s, and we tested 1048 environments
over 1000 steps. The stairs had a width of 0.31 and a height of 0.13, while the maximum height of
the discrete terrain was 0.15. Failure conditions were defined as either the roll or pitch exceeding
1.3, or the robot’s foot getting stuck and unable to move forward. The optimal value for MXD is
expected to be 20 meters.

4.3 Physical Experiments

Navigating Complex Terrains with Sensory Input Our policy substantially enhanced the
quadruped robot’s capability to navigate vertical challenges, such as wooden boxes and low walls.
In our experiments, the robot was tasked with climbing a 32 cm high wooden box. It adeptly lifted
its front legs preemptively and elevated its body to surmount the box, as shown in Figure 5. This
sequence of movements, successfully culminating in the robot climbing over the box, exemplifies
the efficacy of our integrated elevation map and perceptual policies in enabling the robot to tackle
climbing obstacles.

Figure 5: Climbing a wooden box with Lidar
In the obstacle avoidance trials, corresponding to the Pillar terrain used during training, the robot
encountered various obstacles including trees, pillar, or human figures. Leveraging our policy, it
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quickly recognized a human-shaped obstacle through its elevation map, then adeptly adjusted its
trajectory, sidestepping to bypass the obstacle efficiently and safely, as depicted in Figure 6. This
performance underscores our method’s effectiveness, particularly noting that despite the absence
of y-direction velocity training, the robot adeptly maneuvered in the y-direction, showcasing the
robustness and adaptability of our approach.

Figure 6: Avoiding a person with Lidar

Long-Distance Test with Outdoor Terrain Perception Failure Initially, with effective LiDAR
elevation map inputs, the robot used a comprehensive policy for movement, efficiently climbing
16 cm stairs and handling slopes. Subsequently, we deliberately covered the LiDAR, disabling the
elevation map input, and conducted a long-distance test on unstructured terrains. We tested the
robot over a 250m path that included dense grass, irregular terrain, soft and slippery grasslands,
gentle slopes, and stair terrains, where the robot successfully navigated through all (see Figure 1).

Perception Work Success Rate ↑
Highland 0.40

Pillar 0.60
Perception Fail NS-Success Rate↑

Upstairs 0.90
Downstairs 1.00

Slope 1.00
Discrete 0.80

Table 3: Real-World Quantitative Experi-
ments: Our robot can smoothly navigate dif-
ficult terrain even when perception suddenly
fails, without any changes to the policy.

Quantitative Experiments We conducted quantitative
experiments with the physical robot in both perceptive
and non-perceptive scenarios. With Lidar input case, we
tested the performance of climbing and descent on a high-
land, avoiding pillar-like terrain. For the scenario Lidar
fails, The experiment includes going up and down stairs,
crossing slopes and discrete obstacle environments. Com-
pared to the perceptive scenario, we defined a more strin-
gent metric, the No-Snagged Success Rate(NS-Success
Rate), in which the quadruped robot successfully tra-
verses the terrain without noticeable tripping or stalling.
Each terrain was tested ten times. During the experi-
ments, we used a hood to cover the Lidar to simulate per-
ception failure. As shown in Table 3, the robot can not
only traverse challenging terrain using LiDAR input, but can also maintain smooth movement in dif-
ficult terrain in the event of a sudden LiDAR failure. Please refer to supplementary for experiment
videos and detailed experiments setup.

5 Conclusion, Limitations and Future Directions

We propose the concept of Multi-Brain Collaborative Control based on Multi-Agent systems, es-
tablishing a training framework that achieves both perceptive motion and robust obstacle traversal
in the event of perception failure. We tested our system in both simulations and real-world exper-
iments, demonstrating the effectiveness and robustness of our algorithm. However, currently, our
robot’s elevation maps are derived from LiDAR, which heavily depends on the frequency and sta-
bility of the odometry, and involves significant computational overhead. The laser radar odometer
has limited accuracy in high-speed, high-frequency, and vibration-prone scenarios, which results in
a lower success rate in our physical experiments than in simulation experiments in passing through
challenging terrain, as shown in Table 3. In the future, we aim to use end-to-end method to construct
local elevation maps without relying on odometry[22][17]. We will also explore how to apply our
algorithm to control various legged robots.
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Appendix
A Comparison Experiments

Figure 7: Comparison methods

B Ablation Studies

We conducted ablation experiments from multiple angles to examine the effectiveness of our policy
in various aspects. The main ablation experiments we performed were:

• Without VAE and cooperation regularization.
• Without pre-training the blind policy in the first stage.
• Our method with KL adaptive learning rate.

The experimental results are shown in Figure 8. We found that both the VAE and our regularization
term contribute to improving the final performance. Additionally, without the pre-trained model,
training often fails, likely due to the difficulty in converging when training multi-agent systems.
Moreover, this multi-agent training approach is very sensitive to the learning rate; an excessively
high learning rate or adaptive adjustment of the learning rate can easily cause gradient explosion.
As shown in Table 2, the performance of ours w/o VAE is worse than that of ours on stairs and
discrete obstacle terrains. Although the reward difference between ours w/o VAE and ours is not
very pronounced, since these two terrains constitute only a portion of the total terrain, the results
still demonstrate that the regularization effectively guides and balances the collaboration between
the Blind Policy and the Perceptive Policy.

Figure 8: Rewards of Different Strategies Over Training Steps
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C Outdoors Experiments

We tested our controller across various outdoor terrains, which included actions such as climbing
and dodging in complex terrains using perception, as well as navigating through grass, slopes, soft
soil, and steps in cases where perception suddenly failed, as illustrated in Figure 9 and based on
methodologies described by Li et al. [32].

Figure 9: Performance of Robot in Various Terrains.

D Reward Functions

We used the reward function as shown in Table 4, where the Task reward guides the robot to track the
desired speed and complete motions on various terrains. Our setting for the regularization reward
refers to Long et al. [33]; Kumar et al. [31];Agarwal et al. [20]; Cheng et al. [4]. Through extensive
training trials, we optimized our reward weight settings to ensure that the robot moves in a relatively
ideal manner.
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Table 4: Reward Functions

Reward Type Equation Weight
Task Reward

Linear Velocity Tracking exp

{
−∥vcmd

xy −vxy∥2

2σ

}
1.5

Angular Velocity Tracking exp

{
− (ωcmd

yaw−ωyaw)2

σ

}
0.5

Linear Velocity Z v2z -1.0
Angular Velocity XY ω2

x + ω2
y -0.1

Regularization Reward

Z Velocity v2z -1.0
X & Y Velocity ∥ωxy∥22 -0.1

Orientation ∥g∥22 -0.7
Dof Acceleration

∑12
i=1 q̈

2
i −1.5× 10−7

Collision |Fbase|+ |Fhead| -20.0
Action Rate ∥at − at−1∥22 -0.11

Delta Torques
∑12

i=1(τt − τt−1)
2 −1.0× 10−7

Torques
∑12

i=1 τ
2
t -0.00001

Hip Position
∑4

i=1 q
2
roll -0.8

Dof Error
∑12

i=1(q − qdefault)
2 -0.04

Feet Stumble |F hor
feet| > 4× |F ver

feet| -2
Termination − -5

Dof Position Limits
∑12

i=1 (q
out
i , qi > qmax ∨ qi < qmin) -13.0

E Training Details

Robot Domain Randomizations: During the training process, we utilized the following domain
randomization parameters to enhance the robustness of our policy. The range of randomization was
referenced from Long et al. [33]; Wu et al. [34]. In actual robots, factors such as communication
delays can lead to action execution delays of approximately 20ms. Therefore, domain randomiza-
tion of action delays during robot training significantly improved the real-world performance of the
robots.

Table 5: Robot Domain Randomizations

Parameter Range [Min, Max]
Base Mass [0,3] × default kg

CoM [-0.2,0.2] × default m
Ground Friction [0.6, 2.0]
Motor Strength [0.8, 1.2] × default Nm

Joint Kp [0.8, 1.2] × default
Joint Kd [0.8, 1.2] × default

Initial Joint Positions [0.5,1.5]×default
System Delay [0,20] ms

Robot Pushing Interval 8s
Push Velocity XY [0, 0.5]m/s

Heightmaps Domain Randomizations: We utilize the ‘Fast lio’ odometer[35] and the method
from P. Fankhauser and M. Hutter’s[24] to construct the elevation map. Due to inherent random
errors typically associated with laser odometry in practical deployments, we have implemented do-
main randomization for both the elevation map and the z-axis height of the robot’s base.
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Table 6: Heightmap Domain Randomizations

Parameter Range [Min, Max]
Height map updates delay 100ms

Robot base Z Noisy [-0.05,0.05] m
Height Gaussian Noisy [-0.02, 0.02] m

Height Spike Noisy Proportion 5%
Height Spike Noisy [0.1, 0.5]

Terrains Setting:We have designed a training environment containing six different types of terrains:
slopes, stairs, discrete obstacles, pits, gaps, and pillars. The first three terrains are relatively easier for
robot navigation, while the latter three require more reliance on external perception for anticipation.

• Phase One: Blind Policy Training

Table 7: Terrain Parameters and Proportion in Blind Policy Training

Terrain Proportion Parameters
Slope 30% Inclination: [0, 40]
Stairs 60% Step Height: [2cm, 15cm]

Discrete Obstacles 10% Obstacle Height: [3cm, 18cm]

• Phase Two: Advanced Perceptual Policy Training

Table 8: Terrain Parameters and Proportion in Advanced Perceptual Policy Training

Terrain Proportion Parameters
Slope 10% Inclination: [0, 40]
Stairs 60% Step Height: [2cm, 15cm]

Complex Terrain 30%
Pit: [0.1m, 0.45m];

Gap: [0.15m, 0.45m];
Pillar: size [0.4m, 0.6m], center distance [1.6m, 1.4m]

Hyperparameters: Tables 9 and 10 list the hyperparameters used during our two-stage training
process. It is important to note that multi-agent training, especially with MAPPO, is quite sensitive
to hyperparameter settings, for which we referred to the settings recommended in Yu et al. [15]. We
observed that the learning rate particularly impacts multi-agent training, where an excessively high
learning rate can lead to issues such as gradient explosion.

• Phase One: Blind Policy Training
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Table 9: PPO Parameters in Blind Policy Training

Parameter Value

Discount factor 0.99
GAE discount factor 0.95
Timesteps per rollout 21
Epochs per Rollout 5

Minibatches per Epoch 4
Entropy Bonus 0.01

Value Loss Coefficient 1.0
Clip range 0.2

Learning rate KL Adaptive Learning Rate
Desired KL Divergence 0.01

Environments 4096
Policy control frequency 50hz
PD controller frequency 200hz

Using history encoder frequency 20
Action Penalty Coefficient 0.1

Height Map VAE Learning rate 1× 10−4

• Phase Two: Advanced Perceptual Policy Training

Table 10: PPO Parameters in Advanced Perceptual Policy Training

Training Parameter Blind Policy Perceptive Policy

Discount factor 0.99 0.99
GAE discount factor 0.95 0.95
Timesteps per rollout 21 21
Epochs per Rollout 5 5

Minibatches per Epoch 4 4
Entropy Bonus 0.01 0.01

Value Loss Coefficient 1.0 1.0
Clip range 0.2 0.2

Learning rate 1× 10−5 1× 10−4

Environments 4096 4096
Using history encoder frequency 20 None

Action Penalty Coefficient None 0.01
Reconstruction threshold None 0.08

Network Architecture: Tables 11 list the network size used during our two-stage training process.

Table 11: Network Architecture

Parameter Blind Policy Perceptive Policy

Actor Hidden Layer [512, 256, 128] [512, 256, 128]
Critic Hidden Layer [512, 256, 128] [512, 256, 128]
Priv Encoder Layer [256, 128] None
VAE Hidden Dims 512 513
VAE Latent Dims 36 36

F Real-World Experiments Setup

In real-world experiments, we utilize Lidar for external perception, employing FAST LIO[35] as
the odometry system and point cloud map estimator. The final policy input is derived from a 2.5D
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heightmap constructed using Grid Map[36]. Besides, LCM was conducted to transfering heightmap
from ROS to policy. When Lidar suddenly fails, such as covered by a hood or hardware damage, the
policy will not receive the heightmap updates and set its value to zero.

Table 12: Experiments Setup

Term Value

Highland 35cm high
Pillar Diameter 0.65m, Distance 1.5m

Upstairs height 13cm, width 25cm
Downstairs height 13cm, width 25cm

Slop angle 15 degree
Discrete Maximum height difference 20cm

G Sim2Real Details

In sim2real deployment, our lidar and robot parameters, as shown in Table13, are based on configu-
rations recommended by Agarwal et al. [20].

Table 13: Sim2real Parameters

Parameter Value

Radar relative to base coordinates (xyz rpy) [-0.33, 0, -0.35, -0.1, -0.55, 0]
Point cloud clipping height [-0.5m, +0.5m]

Elevation map update frequency 50Hz
Other coefficients for elevation maps size: 3m × 3m, resolution: 0.05m

Odometer update frequency 10Hz
Blind Policy frequency 50Hz (synchronized with Perceptive Policy)

Perceptive Policy frequency 50Hz (synchronized with Blind Policy)
PD controller frequency 1kHz

Joint Kp 40
Joint Kd 40
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